ra	ation of Conformity
uct	
÷	NETWORK CAMERA
÷	SAMSUNG
÷	QND-7080RP
:	-
egul	ations applicable to the product within the scope of
0	
:	Limits and methods of measurement of radio disturbance characteristics of information technology equipment
:	Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances
:	Product family standard: Immunity requirements for components of fire, intruder and social alarm systems
:	Electrostatic discharge immunity test
:	Radiated, radio-frequency, electromagnetic field immunity test
:	Electrical fast transient/burst immunity test
	Surge immunity test Immunity to conducted disturbances, induced by radio-
·	frequency fields
ve b	een carrier out.
:	
:	No.11 Weiliu Rd,Micro-Electronic Industrial Park, TEDA, Tianjin, 300385, People's Republic of China
:	82-02-729-2900/82-02-729-2904 (www.hanwhatechwin.com)
:	Hanwha Techwin Co., Ltd.
	uct : : : : : : : : : : : : : : : : : : :

Applicant address : 1204, Changwon-daero, Seongsan-gu, Chang-won-si, Gyeongsangnam-do, korea

This declaration is issued under the sole responsibility of the manufacturer and

his authorised representative.

Authorized signatory

Name / Title : Jei Soon, Kang / Principal Research Engineer

Date of issue : Jul. 10, 2016

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (1) of (78)

EMC TEST REPORT For CE

Test Report No.	:	KES-E1-16T0336			
Date of Issue	:	Jul. 10, 2016			
Product name	:	NETWORK CAMERA			
Model/Type No.	:	QND-7080RP			
Variant Model	:	-			
Applicant	:	Hanwha Techwin Co., Ltd.			
Applicant Address	:	1204, Changwon-daero, Seongsan-gu, Changwon-si, Gyeongsangnam-do, Korea			
Manufacturer	:	Tianjin Samsung Techwin Opto-Electronic Co., Ltd.			
Manufacturer Address	:	No.11 Weiliu Rd, Micro-Electronic Industrial Park, TEDA,			
Tianjin,		300385, People's Republic of China			
Date of Receipt	:	Jun. 16, 2016			
Test date	:	Jun. 27, 2016 – Jul. 01, 2016			
Test Results	:	☐ In Compliance ☐ Not in Compliance			

Tested by

depung

Dae Jung, Choi EMC Test Engineer

Reviewed by

Dong-Hun, Jang EMC Technical Manager

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

REPORT REVISION HISTORY

Date	Test Report No.	Revision History
Jul. 10, 2016	KES-E1-16T0336	Issued

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document Jun be altered or revised by KES Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KES Co., Ltd. will constitute fraud and shall nullify the document.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (3) of (78)

TABLE OF CONTENTS

1.0	General Product Description	4
1.1	Test Voltage & Frequency	6
1.2	Variant Model Differences	6
1.3	Device Modifications	6
1.4	Equipment Under Test	6
1.5	Support Equipments	6
1.6	External I/O Cabling	
1.7	E.U.T Operating Mode(s)	
1.8	Configuration	
1.9	Calibration Details of Equipment Used for Measurement	
1.10	Test Facility	
1.11	Laboratory Accreditations and Listings	
2.0	Test Regulations	
2.1	Conducted Emissions at Mains Power Ports	
2.2	Conducted Emissions at Telecommunication Ports	
2.3	Radiated Electric Field Emissions(Below 1 ^{GHz})	
2.4	Radiated Electric Field Emissions (Above 1 ^{GHz})	
2.5	Harmonic Current Emissions	
2.6	Voltage Fluctuations and Flicker	
3.0	Criteria for compliance	
3.1	Electrostatic Discharge.	
3.2	Radiated Electric Field Immunity	
3.3	Electrical Fast Transients/Bursts	
3.4	Surge Transients	
3.5	Conducted Disturbance	
3.6	Voltage Dips and Short Interruptions	
	VOITage Dips and Short Interruptions	
	onducted Emissions at Mains Power Ports	
	onducted Emissions at Telecommunication Ports	
R	adiated Electric Field Emissions(Below 1 础)	44
R	adiated Electric Field Emissions(Above 1 础)	45
	armonic Current Emissions and Voltage Fluctuations and Flicker	
	est Setup Photos and Configuration	
	onducted Voltage Emissions	
	onducted Telecommunication Emissions	
	adiated Electric Field Emissions(Below 1 ^{GHz})	
	adiated Electric Field Emissions (Above 1 ^{GHZ})	
	armonic Current Emissions and Voltage Fluctuations and Flicker	
	lectrostatic Discharge	
	adiated Electric Field Immunity	
	lectrical Fast Transients/Bursts	
	urge Transients	
	onducted Disturbance	
	oltage Dips and Short Interruptions	
	UT External Photographs	
E	UT Internal Photographs	73

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr

1.0 General Product Description

Main Specifications of E.U.T are:

	QND-7080R		
Video			
Imaging Device	1/3" 4M CMOS		
Total Pixels	2720x1536		
Effective Pixels	2688×1520		
Scanning System	Progressive		
Min. Illumination	Color : 0.15Lux, B/W : 0Lux		
Lens			
Focal Length (Zoom Ratio)	Motorized 2.8~12mm		
Max. Aperture Ratio	F1.4		
Angular Field of View	H 109.7"~26.0"/ V 60.8"~15.2"/ D 131.3"~30.1"		
Min. Object Distance	0.5m		
Focus control	Simple focus(Motorized V/F) / Manual, Remote control via network		
Lens Type	DC auto iris, P iris		
Mount Type	Board type		
Pan / Tilt / Rotate	board type		
Pan Range	0~350°		
Tilt Range	0~67*		
Rotate Range	0~355"		
Operational			
IR Viewable Length	20m		
in viewable celigti	Off / On (Displayed up to 20 characters per line)		
	- W/W : English/Numeric/Special Characters		
Camera Title	- China : English/Numeric/Special/Chinese Characters		
camera ritte	- Common : Multi-line (Max 5), Color (Grey/Green/Red/Blue/Black/White),		
	Transparency, Auto Scale by Resolution		
Day & Micht	True Day & Night		
Day & Night Backlight Compensation	Off / BLC		
	120dB		
Wide Dynamic Range Digital Noise Reduction			
Motion Detection	SSNR(Off / On) Off / On (4ea polygoon zones)		
Privacy Masking	Off / On (6ea rectangler zones)		
Gain Control White Balance	Off / Low / Middle / High		
	ATW / AWC / Manual / Indoor / Outdoor		
LDC(Lens distortion control)	On/Off (5 levels with Min/Max)		
Electronic Shutter Speed	Minimum / Maximum / Anti flicker		
Flip / Mirror	Flip / Mirror / Hallway view		
Intelligent Video Analytics	Motion Detection with metadata, Tampering, Defocus		
Alarm I/O	Input 1 / Output 1		
Alarm Triggers	Motion detection, Tampering Detection, SD card error, NAS error, Alarm input,		
	Defocus detection		
	File upload via FTP and E-Mail		
Alarm Events	Local storage recording at Event		
	Notification via E-Mail		
	External output		
Pixel Counter	Support (plug-in viewer only)		
Network			
Ethernet	RJ-45 (10/100BASE-T)		
Video Compression Format	H.265, H.264, MJPEG		
Resolution	2592x1520, 2560x1440(16:9) / 2304x1296 / 1920x1080 / 1280x1024 / 1280x960 / 1280x720 / 1024x768 / 800x600 / 800x450 / 720x576 / 720x480 / 640x480 / 640x360 / 320x240		
Max. Framerate	H.265 : Max 20fps at 4M, Max 30fps at 2M all resolutions H.264 : Max 20fps at 4M, Max 30fps at 2M all resolutions		
	MJPEG : Max 5fps		

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 Test report No.: KES-E1-16T0336 Page (5) of (78)

Smart codec	WiseStream
	H.265 : Target Bitrate Level Control
Video Quality Ajustment	H.264 : Target Bitrate Level Control
	MJPEG : Quality Level Control
	H265 : CBR or VBR
Bitrate control method	H.264 : CBR or VBR
	MJPEG : VBR
Streaming Capability	Multiple Streaming(Up to 3 Profiles)
Audio I/O	Built-in MIC
	G.711 u-law /G.726 Selectable
Audio Compression Format	G.726(ADPCM) : 8KHz, G.711 : 8KHz
Addio Compression Pormat	G.726 : 16Kbps, 24Kbps, 32Kbps, 40Kbps
Audio Communication	Uni-directional
IP	IPv4, IPv6
IP	TCP/IP, UDP/IP, RTP(UDP), RTP(TCP), RTCP,RTSP, NTP, HTTP, HTTPS, SSL, DHCP,
Protocol	
Protocol	PPPoE, FTP, SMTP, ICMP, IGMP, SNMPv1/v2c/v3(MIB-2), ARP, DNS, DDNS, QoS, PIM-
	SM, UPnP, Bonjour
	HTTPS(SSL) Login Authentication
	Digest Login Authentication
Security	IP Address Filtering
	User access Log
	802.1X Authentication
Streaming Method	Unicast / Multicast
Max. User Access	6 users at Unicast Mode
	Micro SD/SDHC/SDXC Max 128G, NAS
Edge storage	- Motion images recorded in the SD memory card can be downloaded
	- Manual recording at Local PC
Application Programming Inte	ONVIF Profile S, G
reprice to the trog tanking inter	SUNAPI(HTTP API)
Webpage Language	English, Korean, Chinese, French, Italian, Spanish, German, Japanese, Russian,
Treopage Language	Swedish, Portuguese, Czech, Polish, Turkish, Dutch, Hungary, Greek
	Supported OS: Windows 7, 8, 10, Mac OS X 10.8. 10.9. 10.10. 10.11
	[Non-plugin Webviewer]
	Supported Browser: Google Chrome 47, MS Edge 20
Web Viewer	Support Codec : Video-H.264, MJPEG (Max. 1M 15fps), Audio-G.711
	[Plug-in Webviewer]
	Supported Browser : MS Explore 11 , Mozilla Firefox 43, Apple Safari 9 * Mac OS X
	only
Central Management Software	SmartViewer
Environmental	
Operating Temperature / Hum	-10°C ~ +55°C / Less than 90% RH
Storage Temperature / Humidi	-30°C ~ +60°C (-22°F ~ +140°F) / Less than 90% RH
Ingress Protection	8
Vandal Resistance	
Electrical	
Input Voltage / Current	PoE(IEEE802.3af, Class3), DC 12V
Power Consumption	Max.7.2W(PoE), Max.6.4W(DC12V)
Mechanical	
Color / Material	Ivory / Plastic
Dimension (WxHxD)	∮119.8x98.8mm
Weight	355g
reight	and a

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (6) of (78)

1.1 Test Voltage & Frequency

Unless indicated otherwise on the individual data sheet or test results, the test voltage and frequency was as indicated below.

Voltage	🗌 220 Vac	🗌 230 Vac	24	0 Vac	🛛 PoE	🛛 12 Vdc
Frequency	50 Hz	🗌 60 Hz		Hz		

1.2 Variant Model Differences

Not applicable

1.3 Device Modifications

Not applicable

1.4 Equipment Under Test

Description	Model Number	Serial Number	Manufacturer	Remarks
NETWORK CAMERA	QND-7080RP	-	Tianjin Samsung Techwin Opto-Electronic Co., Ltd.	E.U.T

1.5 Support Equipments

Description	Model Number	Serial Number	Manufacturer	Remarks
Notebook	NT63025J	JK9091EF400432X	Samsung Electronics Co., Ltd.	-
AC/DC ADAPTER	A13-040N2A	CN60BA4400313AD 0N843KO243	Chicony Power Technology (suzhou)Co., Ltd.	-
PoE	ANY4805C-LT1	-	ANY ELECTRONICS CO., LTD.	-
Alarm	-	-	-	-

External I/O Cabling 1.6

- 12 V (dc) Mode

Star	t	EN	ID	Cable Spec.	
Description	I/O Port	Description	I/O Port	Length	Shield
NETWORK	LAN(RJ-45)	Notebook	LAN(RJ-45)	5.0	U
CAMERA (E.U.T)	Alarm	Alarm	Alarm	3.0	U

- PoE Mode

Star	t	EN	ID	Cable	Spec.
Description	I/O Port	Description	I/O Port	Length	Shield
NETWORK CAMERA	LAN(PoE)	PoE	LAN(PoE)	5.0	U
(E.U.T)	Alarm	Alarm	Alarm	3.0	U
PoE	LAN(RJ-45)	Notebook	LAN(RJ-45)	4.0	U

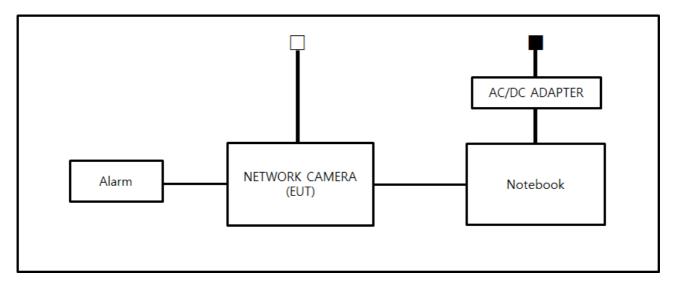
* Unshielded=U, Shielded=S

1.7

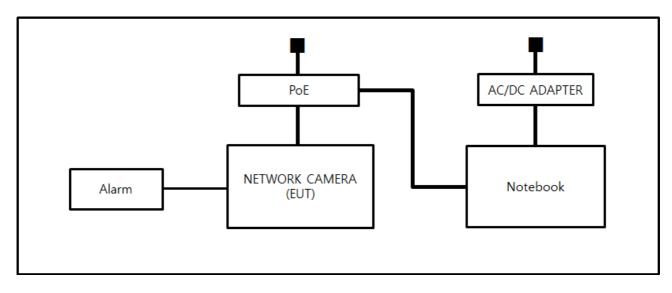
E.U.T Operating Mode(s) Equipment under test was operated during the measurement under the following conditions:

Test mode	Normal operating
OP	MONITORING Network ping test

- Input power condition during the measurements was 12 V (dc) , PoE



C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (8) of (78)


1.8 Configuration

- 12 V (dc) Mode

- PoE Mode

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Test report No.: KES-E1-16T0336 Page (9) of (78)

1.9 Calibration Details of Equipment Used for Measurement

Test equipment and test accessories are calibrated on regular basis. The maximum time between calibrations is one year or what is recommended by the manufacturer, whichever is less.

1.10 Test Facility

The measurement facility is located at 473-29 Gayeo-ro, Yeoju-si, Gyeonggi-do, 12658, Korea. The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22.

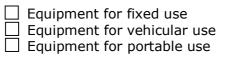
1.11 Laboratory Accreditations and Listings

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3 & 10 meter Open Area Test Sites and one conducted site to perform FCC Part 15/18 measurements.	FC
JAPAN	VCCI	Mains Ports Conducted Interference Measurement, Telecommunication Ports Conducted Disturbance Measurement and Radiation 10 meter site, Facility for measuring radiated disturbance above 1 GHz	R-4308, C-4798, T-2311, G-914
KOREA	MSIP	EMI (10 meter Open Area Test Site and two conducted sites) Radio(3 & 10 meter Open Area Test Sites and one conducted site) EMS (ESD, RS, EFT/Burst, Surge, CS, Magnetic, Dips and interruptions)	KR0100
Canada	IC	3 & 10 meter Open Area Test Sites and one conducted site	4769B-1
Europe	CE	EMI (10 meter Open Area Test Site and two conducted sites) Radio(3 & 10 meter Open Area Test Sites and one conducted site) EMS (ESD, RS, EFT/Burst, Surge, CS, Magnetic, Dips and interruptions)	CE
International	KOLAS	EMI (10 meter Open Area Test Site and two conducted sites) Radio(3 & 10 meter Open Area Test Sites and one conducted site) EMS (ESD, RS, EFT/Burst, Surge, CS, Magnetic, Dips and interruptions)	TESTING NO. 489

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr

Test report No.:
KES-E1-16T0336
Page (10) of (78)

2.0 Test Regulations


The emissions tests were performed according to following regulations:

EMC – Directive 2014/30/EU		
EN 61000-6-3:2011		
EN 61000-6-1:2007		
EN 61000-6-4:2007 +A1:2011		
EN 61000-6-2:2005		
EN 55011:2007 +A1:2010	Group 1	Group 2
EN 55014-1:2006 +A2:2011		
EN 55014-2:1997 +A2:2008		
EN 55015:2013		
EN 61547:2009		
⊠ EN 55022:2010	🛛 Class A	Class B
EN 55024:2010 +A1:2015		
⊠ EN 50130-4:2011 +A1:2014		
EN 61000-3-2:2014		
EN 61000-3-3:2013		
EN 61326-1:2013		

KES Co., Ltd. C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr			Test report No.: KES-E1-16T0336 Page (11) of (78)
🗌 VCCI V-3 / 20	15.04	Class A	Class B
	R22:2009 +A1:2010	Class A	Class B
🗌 47 CFR Part 1	5, Subpart B		
CISPR 22:2	2009 +A1:2010	Class A	Class B
ANSI C63.4	-2009		
IC Regulation	ICES-003 : 2016		
CAN/CSA CISPR 22-10		Class A	Class B
🗌 ANSI C63.4	-2014		

RE- Directive 2014/53/EU

EN 301 489-1 V1.9.2

EN 301 489-3 V1.6.1

EN 301 489-17 V2.2.1

EN 60945:2002

Test report No.: KES-E1-16T0336 Page (12) of (78)

2.1 Conducted Emissions at Mains Power Ports

Test Date

N/A

Test Location

Electro wave Shieldroom

Test Equipment

Used	Description	Model Number	Manufacturer	Serial Number	Cal. Due
	EMI Test Receiver	ESR3	R&S	101783	05, 03, 2017
	LISN	ENV216	R&S	101137	02, 04, 2017
	LISN	ENV216	R&S	101786	05, 02, 2017
	Electro wave Shieldroom	-	SEMITEC	-	-

Test Conditions

Temperature:	C
Relative Humidity:	%

Frequency Range of Measurement

150 kHz to 30 MHz

Instrument Settings

IF Band Width: 9 kHz

Test Results

The requirements are:

	PASS
	NOT PASS
\ge	NOT APPLICABLE

Remarks

Because the E.U.T power is 12 V (dc) power and PoE, limits are not specified.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (13) of (78)

2.2 Conducted Emissions at Telecommunication Ports

Test Date

Jun. 28, 2016

Test Location

Electro wave Shieldroom

Test Equipment

Used	Description	Model Number	Manufacturer	Serial Number	Cal. Due
\boxtimes	EMI Test Receiver	ESR3	R&S	101783	05, 03, 2017
\square	LISN	ENV216	R&S	101137	02, 04, 2017
\boxtimes	LISN	ENV216	R&S	101786	05, 02, 2017
\boxtimes	8-Wire ISN CAT3	CAT3 8158	Schwarzbeck Mess	8158-0019	04, 01, 2017
\boxtimes	8-Wire ISN CAT5	CAT5 8158	Schwarzbeck Mess	8158-0030	04, 01, 2017
	8-Wire ISN CAT6	NTFM 8158	Schwarzbeck Mess	8158-0029	08, 14, 2016
\boxtimes	Electro wave Shieldroom	-	SEMITEC	-	-

Test Conditions

Temperature:	24,5 ී
Relative Humidity:	47,7 %

Frequency Range of Measurement

150 kHz to 30 MHz

Instrument Settings

IF Band Width: 9 kHz

Test Results

The requirements are:

☑ PASS
 ☑ NOT PASS
 ☑ NOT APPLICABLE

Remarks

See Appendix A for test data.

Test report No.: KES-E1-16T0336 Page (14) of (78)

2.3 Radiated Electric Field Emissions(Below 1 GHz)

Test Date

Jun. 27, 2016

Test Location

Open Area Test Site #1

Open Area Test Site #2

Test Equipment

Used	Description	Model Number	Manufacturer	Serial Number	Cal. Due
\boxtimes	EMI Test Receiver	ESR3	R&S	101781	05, 03, 2017
\boxtimes	Trilog-Broadband Antenna	VULB 9163	SCHWARZBECK	9163-713	05, 15, 2017
\boxtimes	Open Area Test Site	-	KES	-	-
\square	Antenna Mast	-	DAEIL EMC	-	-
\boxtimes	Turn Table	-	DAEIL EMC	-	-

Test Conditions

Temperature:	30,5	°C
Relative Humidity:	43,0	%

Frequency Range of Measurement


30 MHz to 1 GHz

Instrument Settings

IF Band Width: 120 kHz

Test Results

The requirements are:

Remarks

See Appendix A for test data.

Test report No.: KES-E1-16T0336 Page (15) of (78)

2.4 Radiated Electric Field Emissions(Above 1 GHz)

Test Date

Jun. 28, 2016

Test Location

Semi Anachoic Chamber #2

Test Equipment

Used	Description	Model Number	Manufacturer	Serial Number	Cal. Due
	EMI Test Receiver	ESU26	R&S	100552	04, 24, 2017
	Broadband Coaxial Preamplifier	BBV 9718	Schwarzbeck Mess - Elektronik	9718-246	10, 23, 2016
	Double Ridged Horn Antenna	5/5-5/1	A.H.SYSTEM,INC	781	05, 07, 2017
	Semi Anachoic Chamber #2	-	SEMITEC	-	-
\square	Antenna Mast	-	AUDIX	-	-
\square	Turn Table	-	AUDIX	-	-

Test Conditions

Temperature:	24,5 ℃
Relative Humidity:	47,7 %

Frequency Range of Measurement

1 GHz to 6 GHz

Instrument Settings

IF Band Width: 1 ₩2

Test Results

The requirements are:

Remarks

See Appendix A for test data.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Test report No.: KES-E1-16T0336 Page (16) of (78)

2.5 Harmonic Current Emissions

Test Date

N/A

Test Location

Electro wave Shieldroom

Test Equipment

Used	Description	Model Number	Manufacturer	Serial Number	Cal. Due
	AC Source	ACS 500 N	EM TEST	V1024106760	08, 13, 2016
	Digital Power Analyzer	DPA 500 N	EM TEST	V1024106759	08, 13, 2016

Test Conditions

Temperature:	°C
Relative Humidity:	%

Classification of Equipment for Harmonic Current Emissions

Class A
 Class B
 Class C(Below 25 W)
 Class C(Above 25 W)
 Class D

Test Results

The requirements are:

☐ NOT PASS☑ NOT APPLICABLE

Remarks

Becauser the E.U.T power is less than 75 W, limits are not specified.

Test report No.: KES-E1-16T0336 Page (17) of (78)

2.6 Voltage Fluctuations and Flicker

Test Date

N/A

Test Location

Electro wave Shieldroom

Test Equipment

Used	Description	Model Number	Manufacturer	Serial Number	Cal. Due
	AC Source	ACS 500 N	EM test	V1024106760	08, 13, 2016
	Digital Power Analyzer	DPA 500 N	EM test	V1024106759	08, 13, 2016

Test Conditions

Temperature:	°C
Relative Humidity:	%

Test Results

The requirements are:

PASS

☐ NOT PASS☑ NOT APPLICABLE

Remarks

Because the E.U.T power is 12 V (dc) power and PoE.

3.0 Criteria for compliance

Criteria for compliance was based on the following guidelines: EN 50130-4:2011 +A1:2014 Alarm systems-Part 4: Electromagnetic compatibility Product family standard: Immunity requirements for components of fire, intruder and social alarm systems

The variety and the diversity of the apparatus within the scope of this document makes it

difficult to define precise criteria for the evaluation of the immunity test results.

If as a result of the application of the tests defined in this standard, the apparatus

becomes dangerous or unsafe then the apparatus shall be deemed to have failed the test.

A functional description and a definition of performance by the manufacture and noted in the test

report, based on the following criteria:

Electrostatic discharge

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the application of discharge is permissible, providing that is no

residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change.

Radiated electromagnetic fields

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the application of discharge is permissible, providing

which could be interpreted by associated equipment as a change, and no such

Flickering of indicators occurs at a field strength of 3 $\,$ V/m.

For components of CCTV systems, where the picture is allowed at 10 $\,$ V/m, providing.

(a) there is no permanent damage or change to EUT

(e.g. no corruption of memory or changes to programmable setting etc.)

(b) at 3 V/m, any deterioration of the picture is so minor that the system could still be used; and

(c) there is no observable deterioration of the picture at 1 $\,$ V/m.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Fast transient burst / slow high energy voltage surge

There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the application of discharge is permissible, providing That there is no residual is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change.

Conducted RF immunity

There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the application of discharge is permissible, providing That there is no residual is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicators oeuvres at U = 130 dB_µV. For component of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of the picture is allowed at U = 140 dB_µV, providing: (a) there is no permanent damage or change to the EUT (e.g. no corruption of memory or changes to programmable settings etc.) (b) at U = 130 dB_µV, any deterioration of the picture is so minor that the system could still be used; and (c) there in no observable deterioration of the picture at U = 120 dB_µV.

Voltage dip/interruption / Voltage variation

There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test, after the conditioning.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (20) of (78)

3.1 Electrostatic Discharge

Reference Standard

EN 61000-4-2:2009

Test Date

Jun. 27, 2016

Test Location

EMS-ESD: Electro wave Shieldroom

Test Equipment

Used	Description	Model Number	Manufacturer	Serial Number	Cal. Due
\square	ESD SIMULATOR	ESS-2000	Noise Ken	ESS05X4620	02, 24, 2017
\boxtimes	НСР	-	Noise Ken	-	-
\boxtimes	VCP	-	Noise Ken	-	-

Test Conditions

Temperature:	24,9	°C
Relative Humidity:	42,1	%
Atmospheric Pressure:	99,0	kPa

Test Specifications

Discharge Factor: $\geq 1 s$

Discharge Impedance: 330 ohm / 150 pF

Kind of Discharge: Air, Contact (direct and indirect)

Polarity: Positive and Negative

Number of Discharge: 10 at all locations for Air discharge 10 at all locations for Contact discharge

8 kV

15 kV

Discharge Voltage: Conta

ontact	Air	HCP
2 kV	🛛 2 kV	
4 kV	🛛 4 kV	
6 kV	6 kV	$\boxtimes \epsilon$

VC	Р	
	2	kV
	4	kV
\boxtimes	6	kV
	8	kV
	15	5 k\

] 2 kV] 4 kV

6 kV

8 kV

15 kV

Notes:	HCP: Horizontal coupling plane
	VCP: Vertical coupling plane

Required Performance Criteria:

⊠ Complied

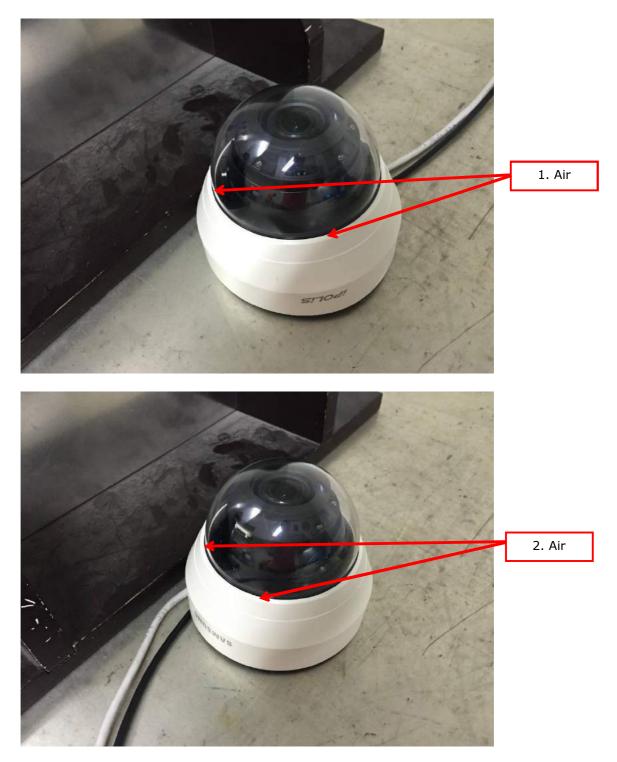
8 kV

15 kV

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (21) of (78)

Location of Discharge:

Air	
Contact	


- 12 V (dc) Mode

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (22) of (78)

- PoE Mode

Test report No.: KES-E1-16T0336 Page (23) of (78)

Test Data

- 12 V (dc) Mode

Indirect Discharge

No.	Test Point	Discharge Method	Performance	Remarks
NO.	Test Point	Discharge Methou	Observation	Remarks
1	HCP Contact	Contact Discharge	Complied	-
2	VCP Contact	Contact Discharge	Complied	-

Direct Discharge

No.	Test Point	t Deint Discharge Method		Domarka
NO.		Discharge Method	Observation	Remarks
1	Enclosure 1	Air Discharge	Complied	-
2	Enclosure 2	Air Discharge	Complied	-

- PoE Mode

Indirect Discharge

No.	Test Point	oint Discharge Method Perfor	Performance	Remarks
NO.	Test Point	Discharge Methou	Observation	Remarks
1	HCP Contact	Contact Discharge	Complied	-
2	VCP Contact	Contact Discharge	Complied	-

Direct Discharge

No.	lo. Test Point Discharge Method		Tost Doint	Performance	Remarks
NO.	Test Point	Discharge Methou	Observation	Rendiks	
1	Enclosure 1	Air Discharge	Complied	-	
2	Enclosure 2	Air Discharge	Complied	-	

Note: "Blank" = Not performed

Observations:

Complied – No degradation of function

Test Results

PASS Required Performance Criteria

□ NOT PASS Required Performance Criteria

Remarks

PASS Required Performance Criteria.

Test report No.: KES-E1-16T0336 Page (24) of (78)

3.2 Radiated Electric Field Immunity

Reference Standard

EN 61000-4-3:2006 +A2:2010

Test Date

Jun. 29, 2016

Test Location

EMS-RS: Semi Anachoic Chamber #1

Semi Anachoic Chamber #2

Test Equipment

Used	Description	Model Number	Manufacturer	Serial Number	Cal. Due
\square	Signal Generator	SMB 100A	R&S	108252	08, 13, 2016
\boxtimes	BROADBAND AMPLIFIER	BBA100	R&S	101239	08, 13, 2016
\square	BROADBAND AMPLIFIER	100S1G6M1	AR	579931	08, 13, 2016
\bowtie	POWER METER	NRP2	R&S	103475	08, 13, 2016
\square	AVG POWER SENSOR	NRP-Z91	R&S	102526	08, 13, 2016
\square	AVG POWER SENSOR	NRP-Z91	R&S	102527	08, 13, 2016
\square	Stacked Log Per.Antenna	STLP 9128 D	Schwarzbeck	9128D038	-
\boxtimes	DIRECTIONAL COUPLER	KYDC-D1070- DX40	KyTelecom Co., Ltd.	KY150001	09, 25, 2016
\square	Semi Anachoic Chamber #2		SEMITEC	-	-

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test Conditions

Temperature:	23,8 ℃
Relative Humidity:	49,2 %
Atmospheric Pressure:	99,0 ^{kPa}

Test Specifications

Antenna Polarization:	Horizontal & ve	rtical unless ind	icated otherwise
Antenna Distance:	🛛 3 m		
Field Strength:	□ 1 V/m ⊠ 10 V/m		🗌 3 V/m
Frequency Range:	□ 80 MHz to 1 0 ⊠ 80 MHz to 2,7		□ 1,4 GHz to 2,7 GHz
Modulation:	⊠ AM, 80 %, 3 ⊠ PM, 1 Hz (0	1 ^{kHz} sine wave ,5 s ON : 0,5 s (OFF)
Frequency step:	🛛 1 % step		
Dwell Time:	🛛 1 s	🗌 3 s	
# of Sides Radiated:	⊠ 4		
Required Performance Criteria:		Complied	

Test Data

- 12 V (dc) Mode

Cide Expected	Observation		
Side Exposed	Horizontal	Vertical	
Front	Complied	Complied	
Right	Complied	Complied	
Back	Complied	Complied	
Left	Complied	Complied	

Test report No.: KES-E1-16T0336 Page (26) of (78)

- PoE Mode

Sido Exposod	Observation		
Side Exposed	Horizontal	Vertical	
Front	Complied	Complied	
Right	Complied	Complied	
Back	Complied	Complied	
Left	Complied	Complied	

Note: "Blank" = Not performed

Observations:

Complied – No degradation of function

Test Results

PASS Required Performance Criteria
 NOT PASS Required Performance Criteria

Remarks

PASS Required Performance Criteria.

3.3 Electrical Fast Transients/Bursts

Reference Standard

EN 61000-4-4:2012

Test Date

Jun. 29, 2016

Test Location

EMS-EFT: Electro wave Shieldroom

Test Equipment

Used	Description	Model Number	Manufacturer	Serial Number	Cal. Due
\boxtimes	Ultra Compact Simulator	UCS 500 N5	EM TEST	V0936105120	06, 27, 2017
\boxtimes	Capacitive Coupling Clamp	HFK	EM TEST	070925	06, 27, 2017
\square	Motor Variac	MV2616	EM TEST	V0936105123	06, 27, 2017
Rel Atr Te Pul	mperature: lative Humidity: mospheric Pressur e st Specificatio lse Amplitude & P C Power Lines)	49 re: 99 ns	,9 ℃ ,4 % ,0 ^{kPa} □ ± 1.0 ^{kV} □ ± 4.0 ^{kV}		2.0 kV
Pulse Amplitude & Polarity: (Other supply / Signal Lines)			$ \begin{array}{ c c c c c c } \hline \pm 0.5 & kV \\ \hline \pm 2.0 & kV \end{array} $	X±	1.0 kV
Burst Period:			⊠ 300 ms	2	S
Re	petition Rate:		5 kHz	2 1	00 kHz

Required Performance Criteria:

Duration of Test Voltage:

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

 $\ge 1 \text{ min}$

 \boxtimes Complied

Test Data

- 12 V (dc) Mode

☐ Input a.c. power ports – Coupling/Decoupling Network used

Mode of Application	OBSERVATIONS		
Mode of Application	(+) Burst (kV)	(-) Burst (kV)	
-	-	-	

Input d.c. power ports – Coupling/Decoupling Network used

	OBSERVATIONS		
Mode of Application	(+) Burst (kV)	(-) Burst (kV)	
L1 – L2	Complied	Complied	

Signal ports and telecommunication ports – Coupling Clamp used

	OBSERVATIONS	
Mode of Application	(+) Burst (kV)	(-) Burst (kV)
LAN(RJ-45)	Complied	Complied
Alarm	Complied	Complied

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

- PoE Mode

□ Input a.c. power ports – Coupling/Decoupling Network used

Mode of Application	OBSERVATIONS		
	(+) Burst (kV)	(-) Burst (kV)	
-	-	-	

□ Input d.c. power ports – Coupling/Decoupling Network used

Mode of Application	OBSERVATIONS	
	(+) Burst (kV)	(-) Burst (kV)
-	-	-

Signal ports and telecommunication ports – Coupling Clamp used

Mode of Application	OBSERVATIONS	
	(+) Burst (kV)	(-) Burst (kV)
LAN(PoE)	Complied	Complied
Alarm	Complied	Complied

Note: "Blank" = Not performed

Observations: Complied – No degradation of function

Test Results

PASS Required Performance Criteria

□ NOT PASS Required Performance Criteria

Remarks

PASS Required Performance Criteria.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (30) of (78)

3.4 Surge Transients

Reference Standard

EN 61000-4-5:2014

Test Date

Jun. 30, 2016

Test Location

EMS-Surge: Electro wave Shieldroom

Test Equipment

Used	Description	Model Number	Manufacturer	Serial Number	Cal. Due
\square	Ultra Compact Simulator	UCS 500 N5	EM TEST	V0936105120	06, 27, 2017
\square	Motor Variac	MV2616	EM TEST	V0936105123	06, 27, 2017
	CDN	CNV 504N	EM TEST	V0936105121	03, 25, 2017
\square	CDN	CNV 508N1	EM TEST	P1551168979	04, 27, 2017
	CDN	CNV 508T5	EM TEST	P1549168422	04, 27, 2017

Test Conditions

Temperature:	23,9 ℃
Relative Humidity:	49,4 %
Atmospheric Pressure:	99,0 kPa

Test Specifications

AC Power Lines Source Impedance:

12 ohm for common mode and 2 ohm for differential mode $% \left({{\left[{{{\rm{mod}}} \right]}_{\rm{mod}}}_{\rm{mod}}} \right)$

Surge Amplitude :	<u>Common Mode</u> ☐ (0,5 / 1,0 / 2,0) kV <u>Differential Mode</u> ☐ (0,5 / 1,0) kV
Number of Surges:	5 surges per angle
Angle:	\Box 0°, 90°, 180°, 270° (input a.c. power port)
Polarity:	Positive & Negative
Repetition Rate:	\Box 1 surge per min \Box 1 surge per 30 sec.
Required Performance Criteria:	Complied

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr

Other supply / Signal Lines

Source Impedance: Surge Amplitude:	Cor	ohm for common ı <u>nmon Mode</u> (0,5 / 1,0) ^{kv}	mode
Number of Surges:	\square	5 Surges	
Polarity:	\square	Positive & Negativ	e
Repetition Rate:	\square	1 surge per min	\Box 1 surge per 30 sec.
Required Performance Criteria:	\boxtimes	Complied	

Test Data

- 12 V (dc) Mode

Line to Line – Differential Mode

Mode of Application	OBSERVATIONS	
	(+) Surge (kV)	(-) Surge (kV)
-	-	-

Line to Earth – Common Mode

Mode of Application	OBSERVATIONS	
	(+) Surge (kV)	(-) Surge (kV)
_	-	-

Signal Lines

☑ Line to Earth – Common Mode

Mode of Application	OBSERVATIONS		
Mode of Application	(+) Surge (kV)	(-) Surge (kV)	
LAN(RJ-45)	Complied	Complied	
Alarm	Complied	Complied	

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

www.kes.co.kr

- PoE Mode

Line to Line – Differential Mode

Mode of Application	OBSERVATIONS		
	(+) Surge (kV)	(-) Surge (kV)	
-	-	-	

□ Line to Earth – Common Mode

Mode of Application	OBSERVATIONS		
	(+) Surge (kV)	(-) Surge (kV)	
-	-	-	

Signal Lines

Line to Eartl	n – Common	Mode
---------------	------------	------

Made of Application	OBSERVATIONS		
Mode of Application	(+) Surge (kV)	(-) Surge (kV)	
LAN(PoE)	Complied	Complied	
Alarm	Complied	Complied	

Note: "Blank" = Not performed

Observations:

Complied – No degradation of function

Test Results

- PASS Required Performance Criteria
- □ NOT PASS Required Performance Criteria

Remarks

PASS Required Performance Criteria.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (33) of (78)

3.5 Conducted Disturbance

Reference Standard

EN 61000-4-6:2014

Test Date

Jul. 01, 2016

Test Location

EMS-CS: Electro wave Shieldroom

Test Equipment

Used	Description	Model Number	Manufacture r	Serial Number	Cal. Due
\boxtimes	Continuous Wave Generator	CWS 500N1	EM TEST	V0936105119	09, 25, 2016
\boxtimes	6dB Attenuator	ATT6	EM TEST	1208-34	08, 13, 2016
\boxtimes	CDN	CDN-M2/M3N	EM TEST	0909-06	08, 13, 2016
	CDN	CDN-T2-RJ11	EM TEST	0909-07	08, 13, 2016
	CDN	CDN-T4	EM TEST	0909-08	08, 13, 2016
	CDN	CDN-T8RJ45	EM TEST	0909-09	08, 13, 2016
	CDN	CDN-AF2	EM TEST	0909-10	08, 13, 2016
	CDN	CDN-AF4	EM TEST	0909-11	08, 13, 2016
\square	EM Injection Clamp	EM 101	Liithi	35943	02, 04, 2017

Test Conditions

Temperature:	23,7 ℃
Relative Humidity:	53,4 %
Atmospheric Pressure:	99,7 kPa

	6-
KES	(K
	C

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (34) of (78)

Test Specifications Frequency range:	\square	150 kHz to 100 MHz		\Box 150 kHz to 80 MHz
Voltage Level:	\square	1 Vrms 10 Vrms		🗌 3 Vrms
Modulation:		AM, 80 %, 1 ^{kHz} sine PM, 1 ^{Hz} (0,5 s ON		DFF)
Frequency step:	\boxtimes	1 % step		
Dwell Time:	\boxtimes	1 s	🗌 3 s	
Required Performance Criteria	\square	Complied		

Required Performance Criteria: \square Complied

Test Data

- 12 V (dc) Mode

🗌 Input a.c. power ports		
Coupling Location (Line Stressed)	Coupling Method	Observation
-	CDN (M2, M3)	-

Input d.c. power ports

Coupling Location (Line Stressed)	Coupling Method	Observation
L1 – L2	CDN (⊠M2, □M3)	Complied

\boxtimes Signal ports and telecommunication ports

Coupling Location (Line Stressed)	Coupling Method	Observation
LAN(RJ-45)	EM Injection Clamp	Complied
Alarm	EM Injection Clamp	Complied

- PoE Mode

Input a.c. power ports

Coupling Location (Line Stressed)	Coupling Method	Observation
-	CDN (M2, M3)	-

□ Input d.c. power ports

Coupling Location (Line Stressed)	Coupling Method	Observation
-	CDN (\Box M2, \Box M3)	-

Signal ports and telecommunication ports

Coupling Location (Line Stressed)	Coupling Method	Observation
LAN(PoE)	EM Injection Clamp	Complied
Alarm	EM Injection Clamp	Complied

Notes: CDN = Coupling Decoupling Network "blank" = Not performed

Observations:

Complied – No degradation of function

Test Results

PASS Required Performance Criteria
 NOT PASS Required Performance Criteria

Remarks

PASS Required Performance Criteria.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (36) of (78)

3.6 Voltage Dips and Short Interruptions

Reference Standard

EN 61000-4-11:2004

Test Date

N/A

Test Location

EMS-Voltage dip: Electro wave Shieldroom

Test Equipment

Used	Description	Model Number	Manufacturer	Serial Number	Cal. Due
	Ultra Compact Simulator	UCS 500 N5	EM TEST	V0936105120	06, 27, 2017
	Motor Variac	MV2616	EM TEST	V0936105123	06, 27, 2017

Test Conditions

Temperature:	°C
Relative Humidity:	%
Atmospheric Pressure:	kPa

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr

Test Specifications & Observations/Remarks

Test Level	Duration [in period/ms (50 Hz)]	<u>Results</u>
🗌 20 % dip	250 /10	
🗌 30 % dip	25/10	
🗌 60 % dip	□ 10/10	
🗌 100 % dip	250/10	
- Voltage cariations		
🗌 Unom + 10 %	🗌 253 V (ac)	
🗌 Unom - 15 %	🗌 195.5 V (ac)	

Observations: Complied – No degradation of function

Test Results

PASS Required Performance Criteria
 NOT PASS Required Performance Criteria
 NOT APPLICABLE

Remarks

NOT APPLICABLE

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (38) of (78)

APPENDIX A – TEST DATA

Conducted Emissions at Mains Power Ports

[HOT]

N/A

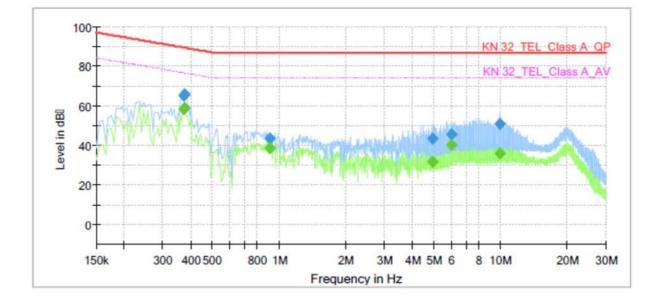
C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

N/A

Test report No.: KES-E1-16T0336 Page (39) of (78)

[NEUTRAL]

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (40) of (78)


Conducted Emissions at Telecommunication Ports

- 12 V (dc) Mode

[10 Mbps]

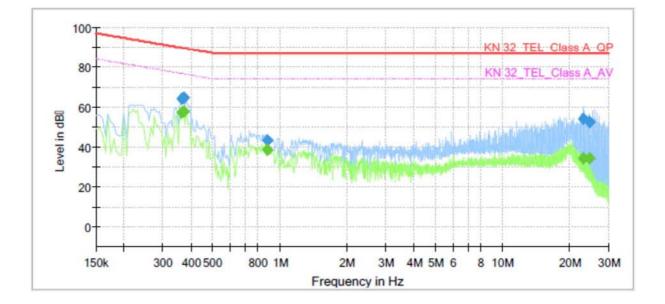
Common Information

Test Description: Model No.: Mode Operator Name: Telecommunication Emission QND-7080RP 12 V (dc) , 10 Mbps KES

Final_Result

Frequency (MHz)	QuasiPeak (dB킲)	CAverage (dBઢ)	Limit (dB킲)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.370000		58.41	76.50	18.09	1000.0	9.000	Single Line	10.0
0.370000	65.05		89.50	24.45	1000.0	9.000	Single Line	10.0
0.375000		58.50	76.39	17.89	1000.0	9.000	Single Line	10.0
0.375000	65.51		89.39	23.88	1000.0	9.000	Single Line	10.0
0.905000		38.76	74.00	35.24	1000.0	9.000	Single Line	9.9
0.905000	43.37		87.00	43.63	1000.0	9.000	Single Line	9.9
4.935000		31.88	74.00	42.12	1000.0	9.000	Single Line	9.9
4.935000	43.39		87.00	43.61	1000.0	9.000	Single Line	9.9
6.050000		40.07	74.00	33.93	1000.0	9.000	Single Line	9.9
6.050000	45.65		87.00	41.35	1000.0	9.000	Single Line	9.9
10.005000		35.87	74.00	38.13	1000.0	9.000	Single Line	10.1
10.005000	50.91		87.00	36.09	1000.0	9.000	Single Line	10.1

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.



C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (41) of (78)

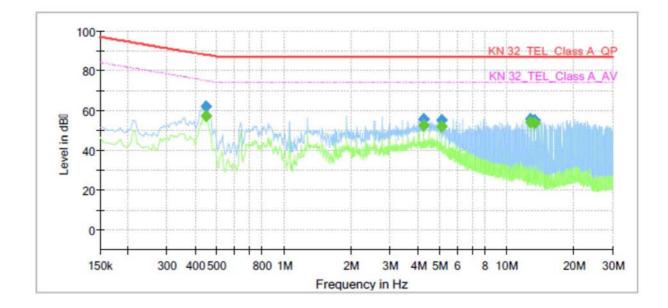
[100 Mbps]

Common Information

Test Description: Model No.: Mode Operator Name: Telecommunication Emission QND-7080RP 12 V (dc) , 100 Mbps KES

Final_Result

Frequency (MHz)	QuasiPeak (dB킲)	CAverage (dB킲)	Limit (dB킯)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.365000		57.36	76.61	19.25	1000.0	9.000	Single Line	9.5
0.365000	63.81		89.61	25.80	1000.0	9.000	Single Line	9.5
0.370000		57.69	76.50	18.81	1000.0	9.000	Single Line	9.5
0.370000	64.36		89.50	25.14	1000.0	9.000	Single Line	9.5
0.885000		38.78	74.00	35.22	1000.0	9.000	Single Line	9.4
0.885000	43.38		87.00	43.62	1000.0	9.000	Single Line	9.4
23.130000		34.28	74.00	39.72	1000.0	9.000	Single Line	9.5
23.130000	53.90		87.00	33.10	1000.0	9.000	Single Line	9.5
24.550000		34.19	74.00	39.81	1000.0	9.000	Single Line	9.4
24.550000	52.27		87.00	34.73	1000.0	9.000	Single Line	9.4


C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (42) of (78)

- PoE Mode

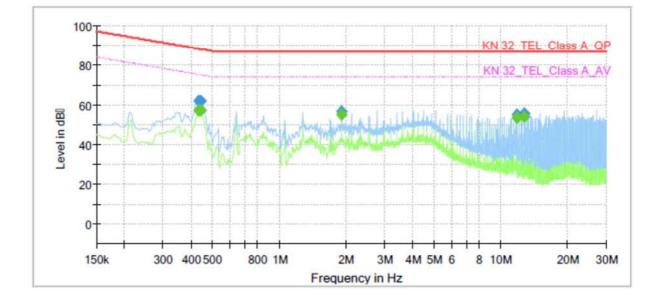
[10 Mbps]

Common Information

Test Description: Model No.: Mode Operator Name: Telecommunication Emission QND-7080RP PoE, 10 Mbps KES

Final_Result

Frequency (MHz)	QuasiPeak (dB킲)	CAverage (dB킲)	Limit (dB킯)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.445000		57.24	74.97	17.73	1000.0	9.000	Single Line	10.0
0.445000	61.90		87.97	26.07	1000.0	9.000	Single Line	10.0
4.255000		52.34	74.00	21.66	1000.0	9.000	Single Line	9.8
4.255000	55.61		87.00	31.39	1000.0	9.000	Single Line	9.8
5.105000		52.05	74.00	21.95	1000.0	9.000	Single Line	9.9
5.105000	55.31		87.00	31.69	1000.0	9.000	Single Line	9.9
12.760000		53.95	74.00	20.05	1000.0	9.000	Single Line	10.1
12.760000	55.43		87.00	31.57	1000.0	9.000	Single Line	10.1
13.400000		53.70	74.00	20.30	1000.0	9.000	Single Line	10.1
13.400000	55.05		87.00	31.95	1000.0	9.000	Single Line	10.1



C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (43) of (78)

[100 Mbps]

Common Information

Test Description: Model No.: Mode Operator Name: Telecommunication Emission QND-7080RP PoE, 100 Mbps KES

Final_Result

Frequency (MHz)	QuasiPeak (dB킲)	CAverage (dB킲)	Limit (dB킯)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.435000		57.12	75.16	18.04	1000.0	9.000	Single Line	9.5
0.435000	61.81		88.16	26.35	1000.0	9.000	Single Line	9.5
0.440000		57.34	75.06	17.72	1000.0	9.000	Single Line	9.5
0.440000	61.93		88.06	26.13	1000.0	9.000	Single Line	9.5
1.915000		54.80	74.00	19.20	1000.0	9.000	Single Line	9.3
1.915000	56.80		87.00	30.20	1000.0	9.000	Single Line	9.3
11.910000		53.26	74.00	20.74	1000.0	9.000	Single Line	9.6
11.910000	54.96		87.00	32.04	1000.0	9.000	Single Line	9.6
12.760000		53.82	74.00	20.18	1000.0	9.000	Single Line	9.6
12.760000	55.50		87.00	31.50	1000.0	9.000	Single Line	9.6

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (44) of (78)

Radiated Electric Field Emissions(Below 1 础)

- 12 V (dc) Mode

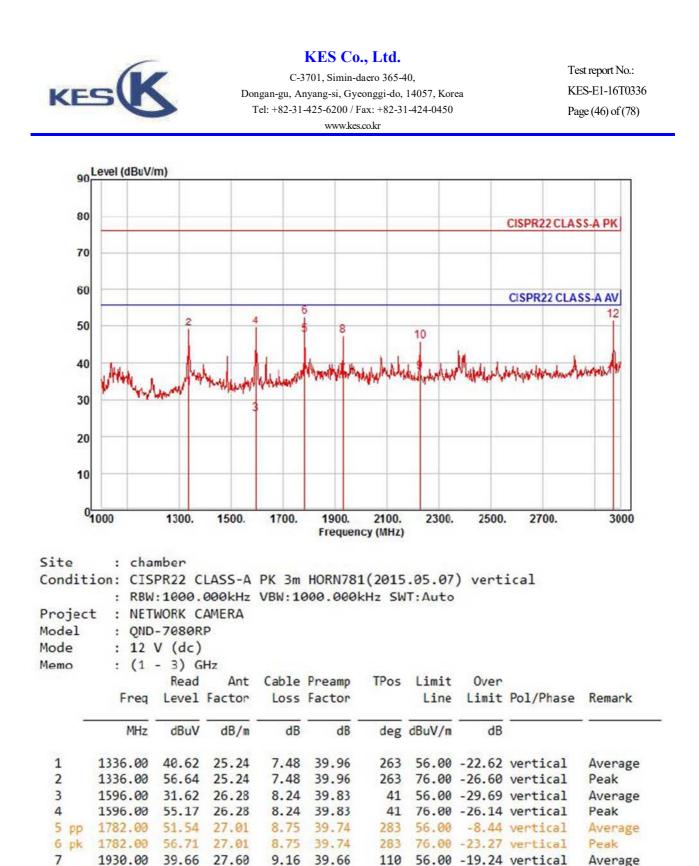
Frequency	Amplitude	ANT	ANT. Height	Correction	Factor	Corrected Amplitude	Applicable Limit	Margin
(MHz)	[dBµV]	Polar. (H/V)	[m]	ANT. [dB/m]	Cable [dB]	[dBµV/m]	[dBµV/m]	[dB]
	12.04		1.05			22.75	10.00	16.05
148.51	12.84	V	1.05	8.15	2.76	23.75	40.00	16.25
216.01	8.91	Н	4.00	11.66	3.44	24.01	40.00	15.99
375.00	13.46	Н	3.86	15.12	4.85	33.43	47.00	13.57
455.99	14.51	V	1.00	16.48	5.44	36.43	47.00	10.57
456.00	8.14	Н	3.91	16.48	5.44	30.06	47.00	16.94
504.00	11.02	V	1.00	17.19	5.77	33.98	47.00	13.02
504.02	7.31	Н	3.45	17.19	5.77	30.27	47.00	16.73

* H : Horizontal, V : Vertical

- PoE Mode

Frequency	Amplitude	ANT Polar.	ANT. Height	Correction Factor		Corrected Amplitude	Applicable Limit	Margin
(MHz)	[dBµV]	(H/V)	[m]	ANT. [dB/m]	Cable [dB]	[dBµN/m]	[dBµV/m]	[dB]
49.01	11.18	V	1.03	13.90	1.44	26.52	40.00	13.48
148.51	11.25	V	1.10	8.15	2.76	22.16	40.00	17.84
216.00	8.70	Н	4.00	11.66	3.44	23.80	40.00	16.20
374.99	13.02	Н	3.79	15.12	4.85	32.99	47.00	14.01
456.00	8.42	Н	3.84	16.48	5.44	30.34	47.00	16.66
456.00	14.59	V	1.00	16.48	5.44	36.51	47.00	10.49
503.99	9.53	V	1.00	17.19	5.77	32.49	47.00	14.51
504.01	7.90	Н	3.38	17.19	5.77	30.86	47.00	16.14

* H : Horizontal, V : Vertical



C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (45) of (78)

Radiated Electric Field Emissions(Above 1 GHz)

- 12 V (dc) Mode

		m)								
80									CISPR22 CLAS	S-A PK
70										
10										
60				_					CISPR22 CLAS	S-A AV
50		2	4	6	- 10 - 1		12			
40	r k n					u here	1		when we wanted	Mar. M.
30	muniter they	James Are	Warphanks"	Shadanay	had shall share	WHAT I WANT	a har a state that	r wight with the search	Vandersdage de seguer seiner	
50			3							
20							-			
10										_
0	1000	1300.	1500.	1700.	1900.	2100.	2300.	2500	. 2700.	300
					ricquen	CJ (MILL)				
2	: cha ion: CIS	PR22 C			HORN781		.05.07		zontal	
2	ion: CIS : RBW t : NET : QND	PR22 C :1000. WORK C -7080R	000kHz AMERA P			1 (2015	.05.07		zontal	
e diti ject ≥l	ion: CIS : RBW t : NET : QND : 12	PR22 C :1000. WORK C -7080R V (dc)	000kHz AMERA P		HORN781	1 (2015	.05.07		zontal	
ject	ion: CIS : RBW t : NET : QND : 12	PR22 C :1000. WORK C -7080R V (dc) - 3) G	000kHz AMERA P Hz	VBW:10	HORN781	L(2015 <hz sw<="" th=""><th>.05.07 IT:Auto</th><th></th><th>zontal</th><th></th></hz>	.05.07 IT:Auto		zontal	
ject	ion: CIS : RBW t : NET : QND : 12 : (1	PR22 C :1000. WORK C -7080R V (dc) - 3) G Read	000kHz AMERA P	VBW:10	HORN781	L(2015 <hz sw<="" th=""><th>.05.07</th><th>Over</th><th>zontal Pol/Phase</th><th>Remar</th></hz>	.05.07	Over	zontal Pol/Phase	Remar
e diti ject ≥l	ion: CIS : RBW t : NET : QND : 12 : (1	PR22 C :1000. WORK C -7080R V (dc) - 3) G Read	000kHz AMERA P Hz Factor	VBW:10	HORN781 000.000 Preamp Factor	L(2015 KHz SW TPos	.05.07 IT:Auto Limit	Over	Pol/Phase	Remar
e diti ject ≥l	ion: CIS : RBW t : NET : QND : 12 : (1 Freq MHz	PR22 C :1000. WORK C -7080R V (dc) - 3) G Read Level 	000kHz AMERA P Hz Ant Factor dB/m	VBW:10 Cable Loss dB	HORN781 000.000 Preamp Factor dB	L(2015 KHz SW TPos deg	Limit Limit dBuV/m	Over Limit dB	Pol/Phase	
e diti ject	ion: CIS : RBW t : NET : QND : 12 : (1 Freq	PR22 C :1000. WORK C -7080R V (dc) - 3) G Read Level dBuV 38.76	000kHz AMERA P Hz Ant Factor dB/m 25.24	Cable Loss dB 7.48	HORN781 000.000 Preamp Factor	L(2015 CHz SW TPos deg 336	Limit Limit dBuV/m 56.00	Over Limit 	Pol/Phase	Avera
e diti ject ≘l e	ion: CIS : RBW : NET : QND : 12 : (1 Freq MHz 1336.00	PR22 C :1000. WORK C -7080R V (dc) - 3) G Read Level 	000kHz AMERA P Hz Ant Factor dB/m 25.24	Cable Loss dB 7.48	HORN781 000.0000 Preamp Factor dB 39.96 39.96	L(2015 CHz SW TPos deg 336	Limit Limit dBuV/m 56.00 76.00	Over Limit dB -24.48 -28.37	Pol/Phase horizontal	Avera Peak
e diti ject ≘l e	ion: CIS : RBW : NET : QND : 12 : (1 Freq MHz 1336.00 1336.00 1396.00	PR22 C :1000. WORK C -7080R V (dc) - 3) G Read Level dBuV 38.76 54.87 31.93	000kHz AMERA P Hz Ant Factor dB/m 25.24 25.24 25.48	Cable Loss dB 7.48 7.48	HORN781 200.000 Preamp Factor dB 39.96 39.96 39.93	TPos deg 336 336	Limit Limit Line dBuV/m 56.00 76.00 56.00	Over Limit dB -24.48 -28.37 -30.86	Pol/Phase	Avera Peak Avera
e diti ject ≘l e	ion: CIS : RBW t : NET : QND : 12 : (1 Freq MHz 1336.00 1336.00	PR22 C :1000. WORK C -7080R V (dc) - 3) G Read Level 	000kHz AMERA P Hz Ant Factor dB/m 25.24 25.24 25.24 25.48 25.48	Cable Loss dB 7.48 7.48 7.66 7.66	HORN781 200.000 Preamp Factor dB 39.96 39.96 39.93 39.93	TPos deg 336 311 111	Limit Limit Line dBuV/m 56.00 76.00 56.00 76.00	Over Limit dB -24.48 -28.37 -30.86 -29.87	Pol/Phase horizontal horizontal horizontal horizontal	Avera Peak Avera Peak
≥ ject ≥l ≥ ⊃	ion: CIS : RBW : NET : QND : 12 : (1 Freq MHz 1336.00 1336.00 1396.00 1396.00	PR22 C :1000. WORK C -7080R V (dc) - 3) G Read Level 	000kHz AMERA P Hz Ant Factor dB/m 25.24 25.24 25.48 25.48 25.48 26.28	Cable Loss dB 7.48 7.66 7.66 8.24	HORN781 200.000 Preamp Factor dB 39.96 39.96 39.93 39.93 39.83	L(2015 CHz SW TPos deg 336 336 111	Limit Line dBuV/n 56.00 76.00 56.00 56.00 56.00	Over Limit dB -24.48 -28.37 -30.86 -29.87 -27.61	Pol/Phase horizontal horizontal horizontal horizontal horizontal	Avera Peak Avera Peak Avera
≥ ject ≥l ⊃ 	ion: CIS : RBW : NET : QND : 12 : (1 Freq MHz 1336.00 1336.00 1396.00 1396.00 1596.00 1596.00	PR22 C :1000. WORK C -7080R V (dc) - 3) G Read Level dBuV 38.76 54.87 31.93 52.92 33.70 58.14	000kHz AMERA P Hz Ant Factor dB/m 25.24 25.24 25.24 25.24 25.48 26.28 26.28 26.28	VBW:10 Cable Loss dB 7.48 7.48 7.66 7.66 8.24 8.24	HORN781 200.000 Preamp Factor dB 39.96 39.96 39.93 39.93 39.83 39.83	L(2015 <hz sw<br="">TPos deg 336 336 111 111 88 88 88</hz>	Limit Limit Line dBuV/m 56.00 76.00 56.00 76.00 56.00 76.00	Over Limit dB -24.48 -28.37 -30.86 -29.87 -27.61 -23.17	Pol/Phase horizontal horizontal horizontal horizontal horizontal horizontal	Avera Peak Avera Peak Avera Peak
≥ ject ≥l ≥ ⊃	ion: CIS : RBW : NET : QND : 12 : (1 Freq MHz 1336.00 1336.00 1396.00 1396.00 1596.00 1596.00 1782.00	PR22 C :1000. WORK C -7080R V (dc) - 3) G Read Level dBuV 38.76 54.87 31.93 52.92 33.70 58.14 43.66	000kHz AMERA P Hz Ant Factor dB/m 25.24 25.24 25.24 25.48 26.28 26.28 26.28 27.01	VBW:10 Cable Loss dB 7.48 7.48 7.66 7.66 8.24 8.24 8.24 8.75	HORN781 200.000 Preamp Factor dB 39.96 39.93 39.93 39.93 39.83 39.83 39.74	L(2015 CHz SW TPos deg 336 336 111 111 88	Limit Limit Line dBuV/m 56.00 76.00 56.00 76.00 56.00 76.00 56.00	Over Limit dB -24.48 -28.37 -30.86 -29.87 -27.61 -23.17 -16.32	Pol/Phase horizontal horizontal horizontal horizontal horizontal horizontal horizontal	Avera Peak Avera Peak Avera Peak Avera
≥ ject ≥l ⊃ _	ion: CIS : RBW : NET : QND : 12 : (1 Freq MHz 1336.00 1336.00 1396.00 1396.00 1596.00 1596.00 1782.00	PR22 C :1000. WORK C -7080R V (dc) - 3) G Read Level dBuV 38.76 54.87 31.93 52.92 33.70 58.14 43.66 48.07	000kHz AMERA P Hz Ant Factor dB/m 25.24 25.24 25.24 25.24 25.48 26.28 26.28 26.28 27.01 27.01	Cable Loss dB 7.48 7.48 7.66 7.66 8.24 8.24 8.75 8.75	HORN782 200.000 Preamp Factor dB 39.96 39.93 39.93 39.93 39.83 39.83 39.83 39.74	TPos deg 336 336 111 111 88 88 33	Limit Limit Line dBuV/m 56.00 76.00 56.00 76.00 56.00 76.00 56.00 76.00 56.00 76.00	Over Limit dB -24.48 -28.37 -30.86 -29.87 -27.61 -23.17 -16.32 -31.91	Pol/Phase horizontal horizontal horizontal horizontal horizontal horizontal horizontal horizontal	Averag Peak Averag Peak Averag Peak Averag Peak
≥ ject ≥l ⊃ 	ion: CIS : RBW : NET : QND : 12 : (1 Freq MHz 1336.00 1336.00 1396.00 1396.00 1596.00 1596.00 1782.00 1782.00 1930.00	PR22 C :1000. WORK C -7080R V (dc) - 3) G Read Level dBuV 38.76 54.87 31.93 52.92 33.70 58.14 43.66 48.07 39.38	000kHz AMERA P Hz Ant Factor dB/m 25.24 25.26 25.24 25.26 25.25 25.26 25	Cable Loss dB 7.48 7.48 7.66 7.66 8.24 8.24 8.75 8.75 9.16	HORN781 200.0001 Preamp Factor dB 39.96 39.93 39.83 39.83 39.83 39.74 39.74 39.74 39.66	t (2015 cHz SW TPos deg 336 336 111 111 88 88 33 33 5	Limit Limit Line dBuV/m 56.00 76.00 56.00 76.00 56.00 76.00 56.00 76.00 56.00 76.00 56.00	Over Limit dB -24.48 -28.37 -30.86 -29.87 -27.61 -23.17 -16.32 -31.91 -19.52	Pol/Phase horizontal horizontal horizontal horizontal horizontal horizontal horizontal horizontal horizontal	Averag Peak Averag Peak Averag Peak Averag Peak Averag
≥ ject ≥l ⊃ _	ion: CIS : RBW : NET : QND : 12 : (1 Freq MHz 1336.00 1336.00 1396.00 1396.00 1596.00 1596.00 1782.00	PR22 C :1000. WORK C -7080R V (dc) - 3) G Read Level 	000kHz AMERA P Hz Ant Factor dB/m 25.24 25.24 25.24 25.24 25.48 26.28 26.28 27.01 27.01 27.60 27.60	Cable Loss dB 7.48 7.48 7.66 7.66 8.24 8.24 8.75 8.75	HORN781 200.000 Preamp Factor dB 39.96 39.93 39.93 39.83 39.83 39.74 39.74 39.66 39.66	TPos deg 336 336 111 111 88 88 33 33	Limit Limit Line dBuV/m 56.00 76.00 56.00 76.00 56.00 76.00 56.00 76.00 56.00 76.00 56.00 76.00	Over Limit dB -24.48 -28.37 -30.86 -29.87 -27.61 -23.17 -16.32 -31.91 -19.52 -28.24	Pol/Phase horizontal horizontal horizontal horizontal horizontal horizontal horizontal horizontal	Averag Peak Averag Peak Averag Peak Averag Peak Averag Peak

110

86

86

154

154

76.00 -28.62 vertical

56.00 -18.43 vertical

76.00 -30.13 vertical

56.00 -19.59 vertical

76.00 -24.17 vertical

Peak

Peak

Peak

Average

Average

8

9

10

11

12

1930.00

2228.00

2228.00 47.49

2970.00 35.19

50.28

39.19

2970.00 50.61 30.26

27.60

28.44

28.44

30.26

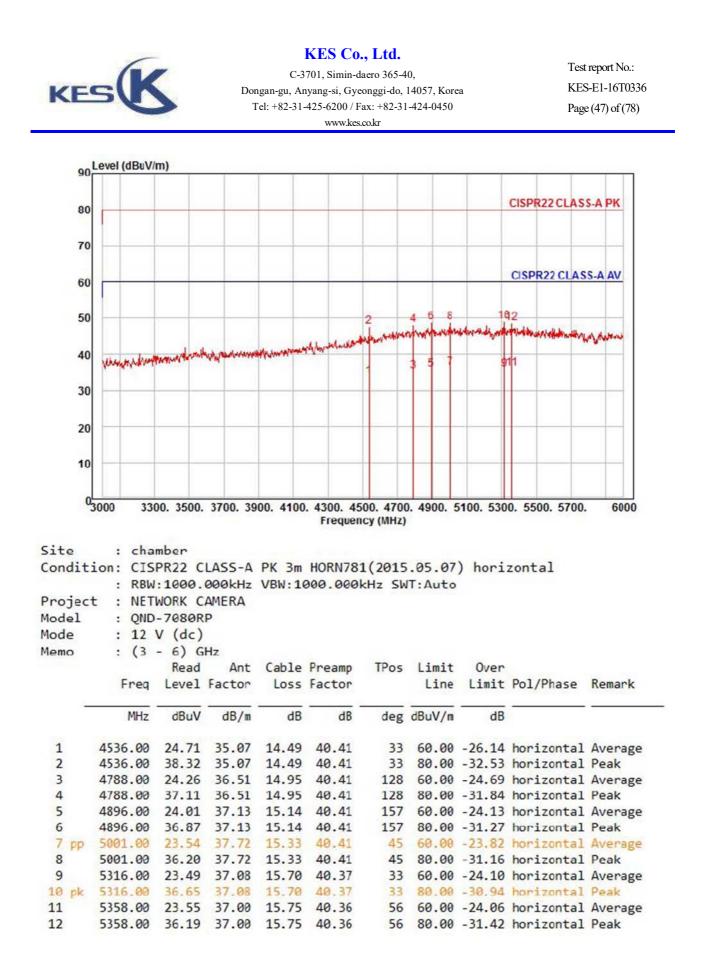
9.16

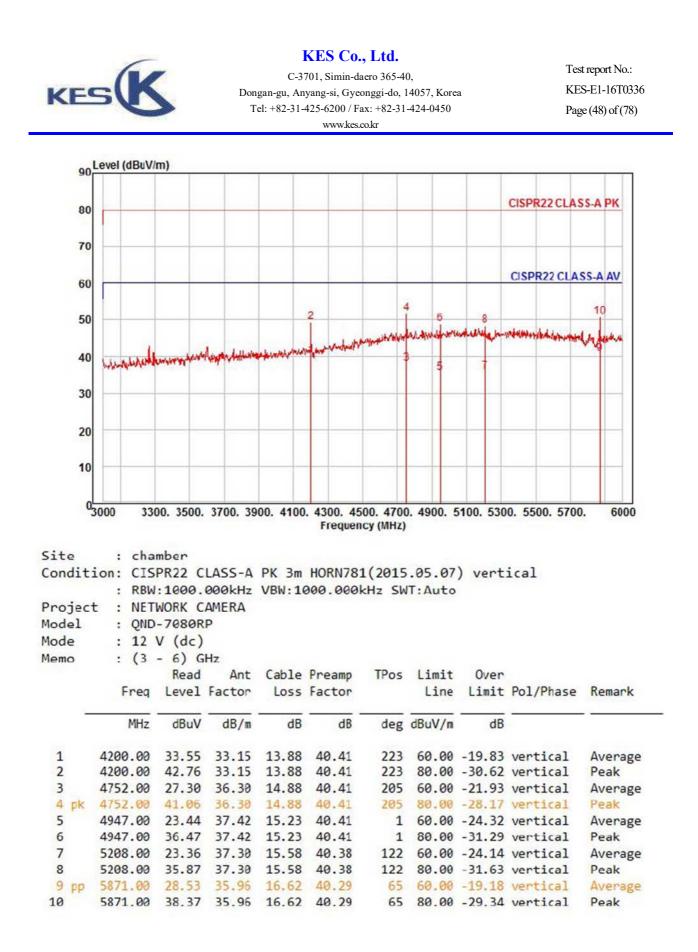
9.70

9.70

11.15

11.15

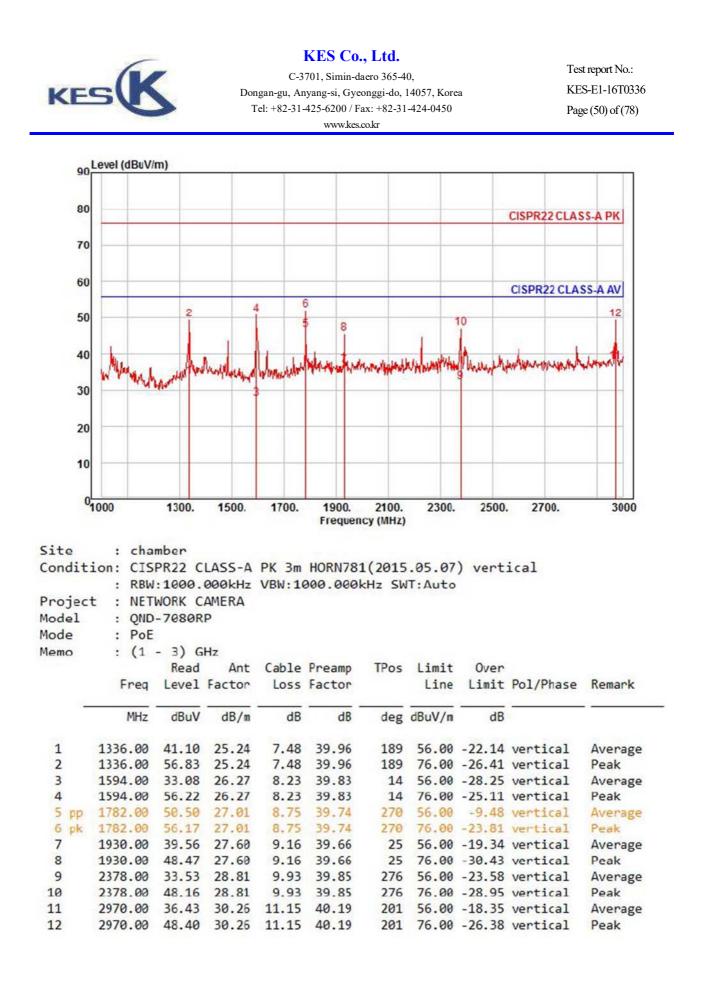

39.66

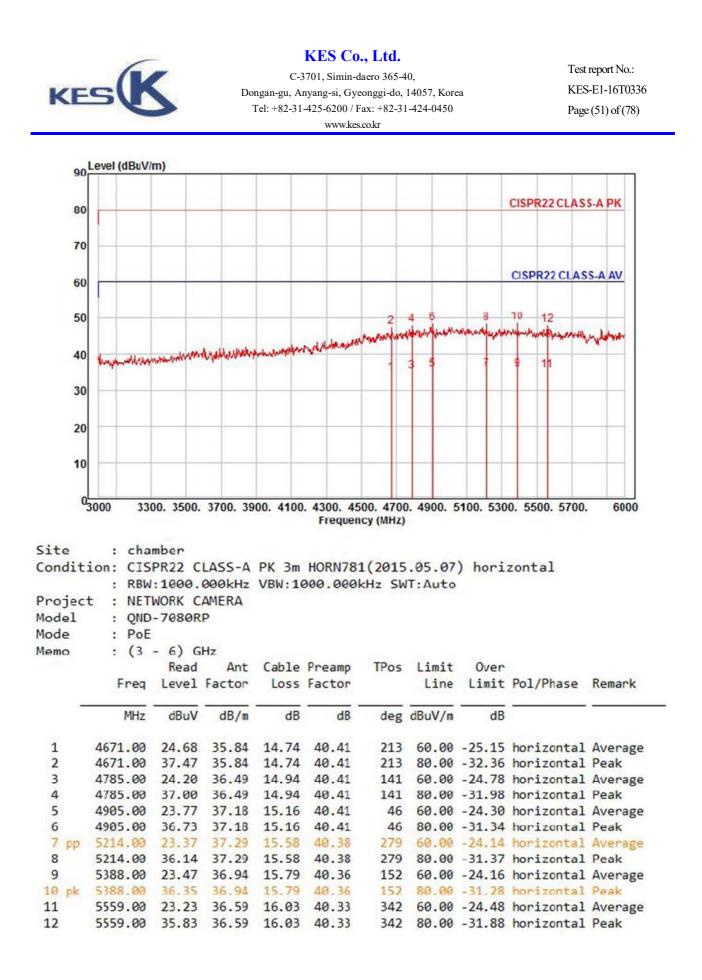

39.76

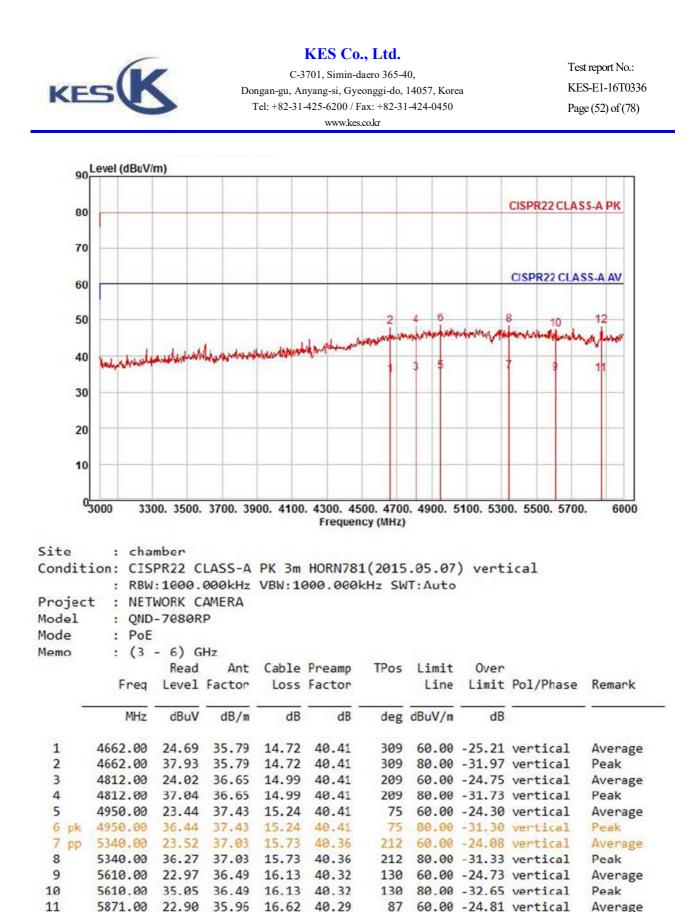
39.76

40.19

40.19






- PoE Mode

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

87 80.00 -31.64 vertical

5871.00 36.07 35.96 16.62 40.29

12

Peak

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Harmonic Current Emissions and Voltage Fluctuations and Flicker

Averag	je narmonic cu	ment results		
Hn	leff [A]	% of Limit	Limit [A]	Result
1		N,	/A	·
2				
3				
4				
5				
2 3 4 5 6 7 8 9 10 11 12 13 14				
7				
8				
9				
10				
11				
12				
13				
14				
15				
15 16 17				
17				
18 19				
19				
20 21				
21				
22 23				
23				
24 25 26 27 28				
25				
26				
27				
28				
29				
30				
31				
32				
29 30 31 32 33 34 35 36 37 38 39				
34 25				
35				
30				
<u>ک/</u>				
38				
39				
40				

Average harmonic current results

Harmonic currents less than 0.6% of the input current measured under the test conditions, or less than 5 mA, whichever is greater, are disregarded.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test Data - Harmonics (continued)

Maximui	m harmonic d	current results		
Hn	leff [A]	% of Limit	Limit [A]	Result
1		N/	Ά	
2 3 4 5 6 7 8 9				
3				
4				
5				
6				
7				
8				
10				
11 12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29 30				
30				
31 32				
33				
34				
35				
35 36				
37				
38				
39				
40				

Harmonic currents less than 0.6% of the input current measured under the test conditions, or less than 5 mA, whichever is greater, are disregarded.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (55) of (78)

Test Data - Voltage Fluctuations

Maximum Flicker results

	EUT values	Limit	Result
Pst		N/A	
Plt			
dc [%]			
dmax [%]			
Tmax [s]			

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (56) of (78)

Test Setup Photos and Configuration

Conducted Voltage Emissions

N/A

N/A

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (57) of (78)

Conducted Telecommunication Emissions

- 12 V (dc) Mode

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (58) of (78)

- PoE Mode

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (59) of (78)

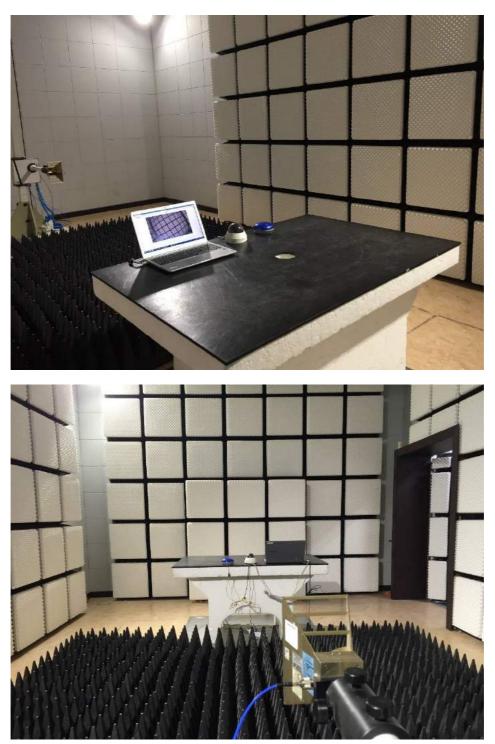
Radiated Electric Field Emissions(Below 1 础)

- 12 V (dc) Mode

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (60) of (78)

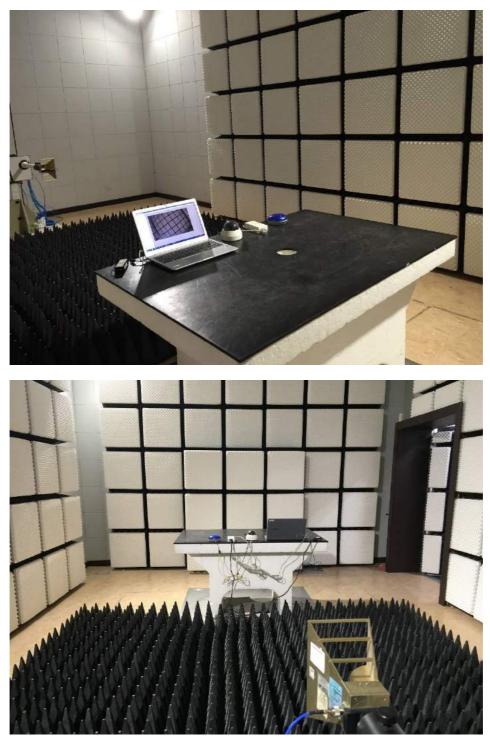
- PoE Mode


This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (61) of (78)

Radiated Electric Field Emissions(Above 1 础)

- 12 V (dc) Mode



This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (62) of (78)

- PoE Mode

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (63) of (78)

Harmonic Current Emissions and Voltage Fluctuations and Flicker

N/A

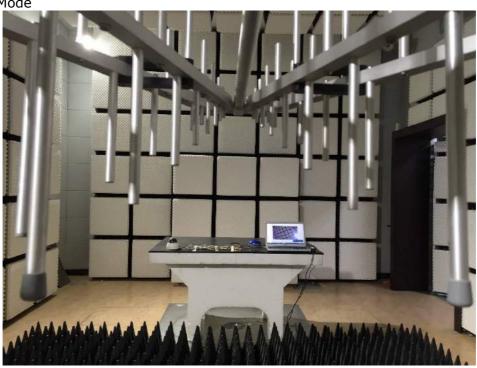
This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

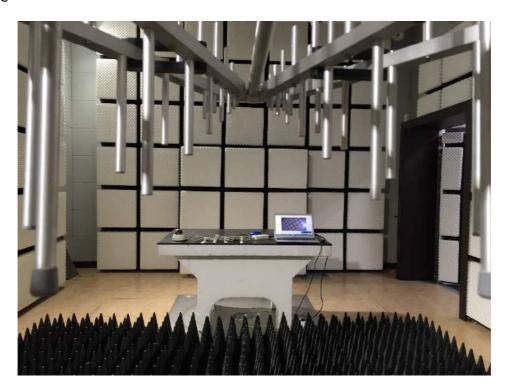
C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No .: KES-E1-16T0336 Page (64) of (78)

Electrostatic Discharge - 12 V (dc) Mode

- PoE Mode




C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (65) of (78)

Radiated Electric Field Immunity

- 12 V (dc) Mode

- PoE Mode

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (66) of (78)

Electrical Fast Transients/Bursts

- 12 V (dc) Mode

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (67) of (78)

- PoE Mode

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No .: KES-E1-16T0336 Page (68) of (78)

Surge Transients - 12 V (dc) Mode

- PoE Mode

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (69) of (78)

Conducted Disturbance

- 12 V (dc) Mode

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (70) of (78)

- PoE Mode

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (71) of (78)

Voltage Dips and Short Interruptions

N/A

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (72) of (78)

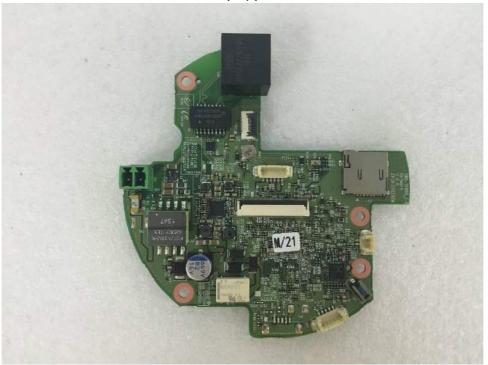
EUT External Photographs

(Top)

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (73) of (78)

EUT Internal Photographs

(Internal View)



C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (74) of (78)

EUT Internal View – Main Board

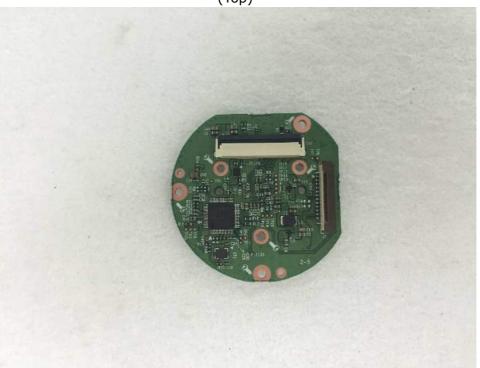
(Top)

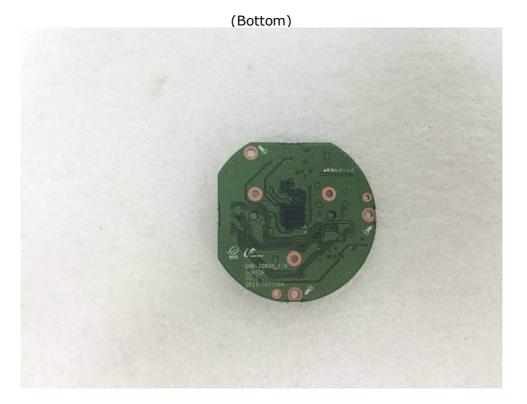
(Bottom)

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (75) of (78)

EUT Internal View – IR LED Board

(Top)

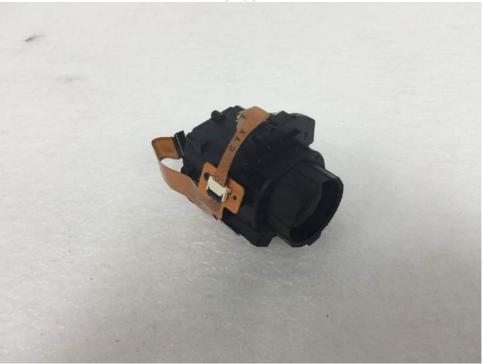

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.



C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-E1-16T0336 Page (76) of (78)

EUT Internal View – SENSOR Board

(Top)

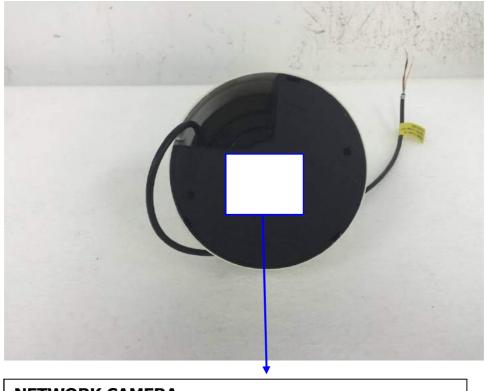

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (77) of (78)

EUT Internal View – Lens

(Top)

(Bottom)



This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.cokr Test report No.: KES-E1-16T0336 Page (78) of (78)

Label and Location

NETWORK CAMERA

Model No: QND-7080RP

Manufacturer : Tianjin Samsung Techwin Opto-Electronic Co., Ltd.

Made in China